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The most likely mechanisms for the formation of prod- 
ucts 2 are either (a) a concerted [+is + ,2,] cycloaddition 
process or (b) a stepwise addition of sulfene to 1, leading to  
2 by the ring closure of zwitterion 4. Since i t  was observed 

4 

that under identical conditions of temperature (SO')  and 
concentration (8 mmol of the dipole in 60 ml of benzene) 
adduct 2b was produced with a complete lack of stereo- 
selectivity, while 2j was formed with a high degree of stere- 
oselectivity, the intermediacy of zwitterion 4 in these reac- 
tions seems unlikely; the effect of the "Z" group on the 
stereochemical outcome of the ring closure of 4 is expected 
to be minimal. On the other hand, if it is assumed that the 
azomethine imines and sulfenes undergo a concerted [r2s + 
,4,] cycloaddition," the differences in the stereoselectivi- 
ties with which 2b and 2j were formed may be rationalized 
by considering the reactivity of the dipoles 1.  Those azo- 
methine imines in which the charge on the anionic nitrogen 
is stabilized by a carbonyl or a sulfonyl group may be less 
reactive and more selective than those in which the anionic 
charge is stabilized by a phenyl group. The more selective 
dipoles may discriminate between the two possible orienta- 
tions of phenyl sulfene leading to the transition state and 
therefore may lead stereoselectively to the observed prod- 
uct.I4 The more reactive, less selective dipole 1 (Z = CsH5) 
may react indiscriminantly with phenyl sulfene to yield a 
mixture of two isomers. 

A more complete evaluation of the scope and utility of 
these reactions is underway and will be reported a t  a later 
date. 
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The Total  Synthesis of (f)-Diumycinol 

Summary:  The first synthesis of the sesterterpene (k)-di- 
umycinol ( 1 )  is reported featuring the reductive opening of 
a cyclopropyl ketone (2) which regiospecifically generates 
the P,P-disubstituted lithium enolate 3 and undergoes al- 
kylation exclusively a t  C-2 with no loss of regiospecificity. 

Sir: Diumycinol, the nonisoprenoid C25 lipid obtained by 
acid hydrolysis of the antibiotic diumycin, has been shown 
to possess structure 1.' Diumycinol became of interest to 

I 
OH 

1 

us, not only because of its polyolefinic nonisoprenoid na- 
ture, but also because it allowed us the opportunity to gen- 
erate regiospecifically an enolate ion (e.g., from a cyclopro- 
pyl ketone2) which in principle should be capable of being 
alkylated without loss of structural integrity (cf. 2 -t 3 4 

4).2-5 We wish to report the first synthesis of (f)-diumyci- 

2 3 4 

no1 and demonstrate that the specifically generated 6,p- 
disubstituted lithium enolate 3 undergoes alkylation as the 
exclusive process with no loss of regio~pecificity.~ 

The synthesis of diumycinol outlined below involves the 
combination of two synthetic pieces, the six-membered- 
ring building block 7 and the sulfone moiety lZ7 The re- 
quired intermediate 78 was prepared from cyclopropyl ke- 
tone 2l" in the following manner. The &@-disubstituted 
lithium enolate 3 formed during the metal-ammonia cleav- 
age of cyclopropyl ketone 2 underwent exclusive C-2 alkyl- 
ation (70%) with allyl bromide in 1,2-dimethoxyethane 
(glyme)." Oxidative cleavage of the double bond of 4 (R = 
allyl) in a two-phase system [benzene-water (1:1)] contain- 
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ing potassium permanganate and tetra-n- butylammonium 
bromide12 resulted in a 42% yield of pure keto acid 5. 
Methylenation13 (methylenetriphenylphosphorane, DM- 
SO, 60°, 96 hr) followed by esterification (ethereal dia- 
zomethane) provided a 76% yield of ester 6 which was 
smoothly converted to aldehyde 7 (58%)with diisobutylalu- 
minum hydride in hexane (-70'). 

5 6 7 

The synthesis of sulfone 12 from the previously de- 
scribed14 aldehyde 8 is detailed below. Reduction of alde- 
hyde 8 (sodium borohydride, ethanol, room temperature, 
1.5 hr) generated alcohol 9 which upon mesylation (meth- 
anesulfonyl chloride, pyridine, O o ,  1 hr) and exchange with 
iodide (sodium iodide, acetone, reflux, 15 hr) afforded a 
90% overall yield (from 8) of iodide 11 (m/e 412.1267). 
Treatment of iodide 11 with sodium p -  toluenesulfinate in 
anhydrous DMF at  135O (15 hr) resulted in an 80% yield of 
chromatographically pure sulfone 12 (m/e 440.2385). The 
NMR spectrum of 12 exhibited peaks a t  0.92 [s, 6 H, 
C(CH3)2], 1.68 (br s, 3 H, olefinic methyl), 2.41 (s, 3 H, 
ArCH3), 2.85 (m, 2 H, -CH2S02), 3.85 (d, 2 H, CHzO), 4.38 
(s, 2H, OCHZAr), 5.12 (m, 2 H, -CH=CH-), 5.30 (t, 1 H, 
=CH-), 7.18 (s, 5 H, -C6H5), and an AB quartet (4 H) cen- 
tered a t  7.42. 

CHO i q  
I 

OCH,C,H, 

8 

I 
OCH,C, H 

9 . X = O H  
IO. X = OMS 
11. x = I  
12, X = SO,C,H-CH, 

Metalation of sulfone 12 a t  -20° with n- butyllithium in 
tetrahydrofuran followed by addition of aldehyde 7 (-20') 
afforded an adduct which was immediately oxidized (Jones 
reagent) to keto sulfone 13 in -40% overall yield. The car- 
bon-sulfur bond of 13 was readily cleaved (3% Na-Hg, eth- 
anol, room temperature, 1 hr) in 77% yield producing inter- 
mediate 14 (m/e 450.3501).15 Methylenation13 of 14 (meth- 

x 

I 
OCH?C& 

13, X = SOjC,H,CH, 
1 4 , X = H  

ylenetriphenylphosphorane, DMSO, 6 5 O ,  48 hr) afforded 
benzyl ether 15 (80%) (mle 448.3692) which upon debenzy- 
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Figure 1. 250-MHz 'H NMR spectrum of synthetic (f)-diumyci- 
no1 in CCld with TMS as internal standard. 

~ C H ~ C ~ H ~  
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lation (lithium, liquid ammonia, -78O, 30 min) resulted in 
an 83% yield of chromatographically pure (f)-diumycinol 
(1). The NMR and ir spectra of synthetic ( f ) -1  were in 
agreement with reference spectra of natural diumycinol 
kindly provided by Dr. W. A. Slusarchyk. The NMR spec- 
trum (60 MHz, CDC13) of synthetic 1 displayed three sharp 
singlets a t  0.87 (3 H),  0.95 (3 H),  and 0.98 (6 H), a broad 
singlet a t  1.73 (3 H), a doublet centered a t  4.12 (2 H), and 
multiplets located at  4.80-4.45 (4 H) and 5.40 (3 H). The 
250-MHz NMR spectrum (CC14) of synthetic 1 cleanly sep- 
arates the four terminal methylene protons from each other 
as well as the trisubstituted olefinic proton from the trans- 
disubstituted olefinic protons (Figure 1). 
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Reactions of a$-Epoxysilanes with 
Organocuprate Reagents. A New Stereospecific 

Olefin Synthesis' 

Summary: a$-Epoxysilanes react with organocuprate re- 
agents in a regio- and stereospecific manner to give good 
yields of p-hydroxyalkylsilanes, which can be stereospecifi- 
cally converted to olefins in high yield under mild condi- 
tions. 

Sir: Olefin-forming elimination reactions of P-hydroxyalk- 
ylsilanes have recently been used for the synthesis of a wide 
variety of compounds;2 usually isomeric mixtures of cis and 
trans olefins have been formed. Using a diastereomerically 
enriched 0-hydroxyalkylsilane, we have recently shown 
that  these elimination reactions are stereospecific, and that 
the acid- and base-induced reactions take opposite stereo- 
chemical  course^.^ We now report the first method for the 
regio- and stereospecific synthesis of P-hydroxyalkylsi- 
lanes.4 This method, coupled with the facile elimination 
reactions, provides a new, highly stereospecific olefin syn- 
thesis of potential generality, and in addition constitutes a 
definitive proof of the stereochemical course of the elimina- 
tion reactions of 0-hydroxyalkylsilanes. 

We have found that the reactions of a,/3-epoxysilanes5 
with organocuprate reagents8 result in regiospecific open- 
ing of the epoxide ring to form 0-hydroxyalkylsilanes in 
good  yield^.^ Thus, treatment of trimethylsilylethylene 
oxide (1)l0 with lithium di-n-butyl cupratell (2 equiv, 
ether, -25', 5 hr) produced, in 88% yield, 2-trimethylsilyl- 
1-hexanol (2).12J3 A similar reaction with epoxide 312 (pre- 
pared from i~obutenyltrimethylsilane~~ in 79% yield by 
treatment with m- chloroperbenzoic acid in CHzC12) yield- 
ed the alcohol 412J5 in 75% yield. 

0 MeJsPoH- /= 
M e l S i d  - 

I BU Bu 
2 

- Me3sifl - A 
Bu Bu 3 

4 
Both silyl alcohols underwent facile /3 elimination reac- 

tions to  the corresponding olefins. Treatment of alcohol 2 
with potassium hydride (THF, room temperature, 1 hr) 
produced 1-hexene in 95% yield by VPC; treatment of alco- 
hol 4 with sodium acetate in acetic acid (room temperature, 
1 hr) gave 2-methyl-2-heptene in quantitative yield (by 
NMR; isolated yield 81%). 

To determine the stereospecificity of these reactions, we 
have treated both cis and trans epoxysilanes 6c and 6t with 
an  organocuprate reagent and have subjected the resulting 
P-hydroxyalkylsilanes to the conditions which we have pre- 
viously shown to cause stereospecific e l imina t i~n .~  The 
epoxides were synthesized in the following manner. cis-l- 
Pentenyltrimethylsilane (5c)12J6J7 (98% cis by VPC) [ir 
(film) 6.23,13.1 Km; NMR (CC14) 6 5.32 (d, 1 H, J = 14 Hz), 
6.16 (m, 1 H)] was treated with m-chloroperbenzoic acid in 
CH2Cl2 to give, in 65% yield, the cis epoxide 6c12 [NMR 
(cc14) 6 1.90 (d, 1 H, J = 5 Hz), 2.83 (m, 1 H); mass spec- 
trum m/e 158.1115 (calcd for C8HlgoSi: 158.1126)]. An 
analogous sequence served to convert trans- l-pentenyltri- 
methylsilane (5t)12J6b,19 [ir (film) 6.20, 10.1 pm; NMR 
(CC14) 6 5.52 (d, 1 H, J = 19 Hz), 6.02 (m, 1 H)] to the trans 
epoxide 6t12 [NMR (CHC13) 6 1.91 (d, 1 H, J = 4 Hz), 2.73 


